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ABSTRACT

Dolph-Chebyshev weights, which realize a minimum sidelobe level
for a specified mainlobe width, can be generated by means of a single
Fast Fourier Transform (FFT). For an even number of elements, 2H,
the size of the FFT is H. Programs for single precision and dcuble
precision procedures are furnished. The utility of this technique
for spectral analysis via large-size FFTs is indicated.
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INTRODUCTION

The ability to realize small sidelobes for a weighted equi-spaced
line array and specified mainlobe width has been available since
Dolph (Ref. 1) solved this problem in 1946. Then in 1953, Stegen
(Ref. 2) presented a practical method of obtaining the actual weights
to be used for the array. Here we will show that the calculation
of all the weights can be accomplished by a single Fast Fourier
Transform (FFT). The speed and accuracy of the FFT can thus be used
to reduce this once tedious calculation to a very quick and accurate
calculation with minimum storage requirements. This is particularly
useful for large numbers of elements, such as are encountered in
spectral analysis, where the sidelobe problem (equivalent
to the array problem) is that of spurious response to frequencies
removed from those of interest.
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THEORETICAL BACKGROUND

In this section, we shall, for completeness, present the theoretical
basis of Dolph's solution and the method Stegen used to calculate
the weights. Then we shall show how the weight calculation can be
realized by means of a single FFT.

Desireable Pattern

The mathematical problem can be envisioned as selection of the
weights fwk} in the finite impulse train in figure 1, such that
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FIGURE 1. Impulse Train for 2H Elements

weight function w(t) has small sidelobes in its spectral window \AT“%,
where

WO = [ at wit) exp(-iamft) (1)

is the Fourier transform of w(t). The total number of elements
(impulses) in figure 1 is even, equal to J4; however, the extensicn

to an odd number of elements is similar tc the technique presented in
the following. The weights {w£§ are assumed to be real and symmetric
about the center, ¢t =C. The time separaticns between impulse locaticn

g
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are all equal to 8 . Although the problem has been couched in the
time domain, the abscissa in figure 1 could equally well be interpreted
as distance for the array problem, or as a different variable for other
applications.

The weight function w(t) can be expressed as

N&)"' kzwh S( - _2._"2'.14) (2)

Substitution of (2) into (1) yields

W = 2w, expliams 2_5;1‘]

) %N, Cos[&l\‘-')’"ﬂ]‘

(3)

vhere we have used the symmetry of the weight structure about the
center. The problem now is to choose weights {";S.: such that W)
in (3) has as low sidelobes as possible for a specified main lobe
width., Wenotice first from (3) that

WE-)=-W) framid.

Thus only the sidelobes in the region (O, 1 ) need be controlled.
24

Let us define the function

)
Gl = 22w, cos[(ane )] (5)

then
W) = &fre?), (6)

The function G satisfies the rules
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G(=u) = G(u), G(u +w) = G(u), G(w-u) = G(u). (7)

Thus, knowledge of G(u) in the interval (0, W/2) completely character-
izes G(u) for all u; this is consistent with (4) and (6).

As a special case,

G(u)-‘-sng'%%— ifw =1lfork=1,2 ..., H. (8)

The first null of this function is at u =W/(2H); this flat weighting
serves as a comparison case.
Now let us consider the function T,y ) (2o cosu), where (Ref. 3,
22.3.15)
T?'H-l (x) = cos [(ZH-l) arc cos (x)] (9)
is an odd polynoniul of degree 2H-1 in x(Ref. 3, 22.3.6). Thus

Toy-y (2, cos u) is an odd polynomial of degree 2H-1 in cos u and can
therefore be expressed as

T (zesu)= ‘%Cn C“[(?S")‘:.(- (10)

28-

A plot of (10) is given in figure 2. It is seen to possess a single

I“;n-l(%co“b
Tm(i‘)"
2'.05\\- 1.
. W W "
-14- -‘M-_\-\-/ \J/ 2
Y

FIGURE 2. Chebyshev Function
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large peak (for 2, > 1) at u = Q0 of value Tow.1 (2,) and equal-ripple
sidelobes cf value 1. The parameter 2, controls the mainlobe/sidelobe
ratio. Fer large H, (10) can be shown to approach cos(YAWT®T) (Ref. 4).

X A comparison of (5) and (10) reveals that we can force these two
functions to be equal fcr all u if we please, by proper choice of
welghts {"'k} . In so doing, we will realize the highly desirable be-
havior depicted in figure 2, namely equi-ripple sidelobes and a sharp
main lobe. In fact, it was proven by Dolph (Ref. 1) that for a
specified mainlobe width (to the first null), the function in figure 2
realizes the minimum sidelobe level possible, and vice versa; thus
(10) represents the optimum pattern under this definition.

Determination of Weights
Setting (5) and (10) equal, we require

H
2Z W os[he] = T (Bwsw), allw

H
In particular, in order to determine the H unknowns {"k}‘l’ let us
force equality at
w =
u.g -i- ':‘T’ “'o,l)-"} H". (1:)

(G(u) and TZH-l(zO cos u) are already equal at u = M/2) Then we have
= 71 - T4)
2 2. cos[(ZK-l)‘;q = T;H_‘(z, @s{Z W), 10 Moy 1 5

H
which constitutes H linear equaticns in the H unknowns {"k} 1.

In crder to solve* (13), we multiply both sides by G.CDs[(Zm-u)-'{-g]
and sum cn n, where

3, n=0
€, = (14)
l, n=1, 2, ..., -1

*This is an applicaticn cf orthogonality over a discrete set of points;
seq, for example, Ref. 5, ch. o,
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There results

ziw‘ ZG"QS[ ')z‘ﬂ“{(z"' ] ZG-‘T (;ms(rn))cos[(mn )Z H]

Ke) (15)
Fbr mal, 2., H
Now we employ the closed form expression
2 ¢ aslkg) = Smlrel_
ko 2 ton b/2) (16)

(where €,3 4) in (15), and obtain

s '-S.E T (z,cos co{(?n DR =2y H. -

Vl".

This is identical to equation (35) of Ref. 2, except for a scale factor.

Representation as FFT

In Appendix A, it is shown (using (17)) that

= Re(«
W“ (x) ,lskﬁ';'_‘]

)
= (18)
Wy Re( ml-k)
where
ZZ,, ewp( |2wkw/H>, all Kk, (bFT) (19)
n=0
and
z, = _}‘_‘_G.TZH_'(Q;,COS exP( ) n=0,1,.., H-1. (20)
-l
Sut {d }o in (19) can be c*rpu.,ed via an H-point FFT of the seguence
{z,}o in (20). and since {3 is rericdi: of period ¥, (18) can
be evaluated frem the result of the FFI.

SAMPLE REFERENCE FRCGRAMS AND EXAMPLES

It will be noticed from (20) that computation of the Y 4 1 nurbers

H), osn< H , suffices to determine all the necessary quantities
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-t
required for the evaluaticn of {&), , except for the actual evaluation
of Toy-1(*). Furthermere, the H-peint FFT in (19) needs storage only
of the quarter-ccsine table cos(2 n/H) = cos(¥ &), Osn= 4, for
the FFTs we employ* (Refs. 6, 7). But these numbers are a subsét of
those generated above; thus economy of evaluation is realized by saving
the appropriate cosine values for the FFT evaluation. This feature
is utilized in the programs written.

Two subroutines have been written for the evaluation of the
Dolph-Chebyshev weights via (18)-(20). In the first one, DOLPHS, the
storage, FFT, and weight evaluation are in single precision. In the
second subroutine, DOLPHD, the storage, FFT, and weight evaluation are
in double precision. These subroutines use the FFTs in Refs. 6 and 7

respectively (without the quarter-cosine subroutine).% In both subrcutines,

it was found necessary to evaluate Tog.]( * ) via double precision; for

example, errors in the third decimal place occurred for H = 512 and -40 dB

sidelobes when Tpp.1(+) was attempted in single precision.

A sample reference program for the single precision case is listed
below:

PARAMETER H=512
.DIMENSION X(H),Y(H),C(H)
DB=40.
CALL DOLPHS(H,DB,X,Y,C)
PRINT 1, C

1 FORMAT(2X,5E26.8)
END

The variable DB is the desired sidelobe level relative to the peak
of the mainlﬁbe, and is in single precision. The single precision
weights {wk}1 in figure 1 are available in array C as indic§ted in
figure 3; that is, C(1) contains edge element weight wy, while C(H)
contains the weight wy. )

cli) | <)
pag B R

< ~
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"'f 500

-
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I N O IS RN R

FIGURE 3. Weight Correspondence to € Array

*Thase FFTs apply only to the case where H is a power of i however,
the technique of Appendix A s more peneral.

(3}
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A sample reference program for the double precision case is listed
below:

PARAMETER H=512
DOUBLE PRECISION X(H),Y(H),C(H)
DB=40.
CALL DCLPED(H,DB,X,Y,C)
PRINT 1, C

1 FORMAT(2X,5D26.18)
END

The quantity dB is still in single precision, as above. The double
precision weights are available in array C in exactly the same order
indicated in figure 3.

For the examples that we tried, the character of the weights
{wk} was such that they are always positive, and they decay
monotonically from the center, w.th the exception of the very edge
weight, which can be relatively large in some cases of a narrow
mainlobe e spectral response G(u) in (5) is very well apprcximated
by cos(Jn‘u’-B’ for large H (such as 512), as predicted by Ref. 4.
The single precision weights agreed with the double precision weights
to seven decimals in most cases.® The accuracy of the double precisicn
results were not checked. The time of execution required for

CALL DOLPHS and H = 512 was 0.43 seconds on the Univac 1108, Exec 8
system, whereas that for CALL DCLPHD was 0.52 seconds.

The auxdliary arrays X and Y required in the main programs above
are available for other purposes once the weights are evaluated and
placed in array C; thus the extra storage cf 2H cells is a tempcrary
requirement.

Some sample spectral respenses are plotted in figures 4-2,
ncrmalized to 0 db a%t the pezk. The firs:, in figure 4, corresponds
to equal weighting at zll elements and is tresented for comrariscn
purposes. Actuzlly, fisure 4 corresponds o a Jlat continulus
weighting over an in%tervzl cf duraticn L seconds (H =90 ); heowover,
for a large number H of elements, there is no substantial 3irlerone.

between figure L and the exact respense for finite H, The first null
cecurs at Lf = 1,

g
pe
o
-

10
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In figure 5, the spectral respense for Dolph-Chebyshev weighting
with a large number of elements®* (H > 1) is plctted for the case
where Lf = P = 1 ccrresponds to the point on the mainlobe where the
eventual sidelobe level is first taken on. The mainlobe width (to
the first null) is virtully the same as that for figure 4; however, the
peak sidelobe has been reduced from -13.3 dB to -21.3 dB.

In figures 6 - 9, the spectral responses for Dolph-Chebyshev
weighting are plotted for P = 1.5, 2.0, 2.5, anu 3.0 respectively.
The quantity P is the value of Lf at which the eventual sidelobe
level is first taken on. The broadening of the mainlobe is accompanied
by a significant decrease in sidelobe level.

COMMENTS

A quick and accurate technique for evaluating the Dolph-Chebyshev
weights for a 24-element array has been accomplished and employs a
single H-point FFT. Thus minimum storage and execution time have been
realized; the additional temporary storage needed for the evaluation
is available for use immediately after the weights are calculated.

% Double precision evaluation of the Chebyshev polynomial is required;
‘however further calculations can all be done in siigle precision with
_excelJent. results.

The use of Dolph-Chebyshev weighting for spectral analysis via
large-size FFTs should be tempered with the following caution: since
the spectral respcnse dces not decay with frequency (see figures 5-8),
strong frequency compcnents far removed from the frequency band of
interest can severely bias the estimate. This "distant" bias is greatly
reduced vhen a window (such as Hanning), which decays rapidly with
frequency, is used®™ (n the other hand, the relatively larger adjacent
sidelcbes of ¢ window with decaying response yield larger values of
"lccal" bias if streng interferences are clese to the frequency band
of interest. Wwhich windeow is to be preferrsd in a particular arrlication
depends upon the rate o deeay o the true spectrun with rreguency, and
the strenpeth and toeatlon off clrong frequency compenents,  Sinee this
Inf'ermation e not kanown & pricri, but is in fact the goal of the analysis,
concurrent spectral analysis with twe types of windows, e.g. Hanning
and Dolph-Chebyshev, may be susgested ®r scme applicatiocns.

*The dependence of the spectral response on H is negligible for large
H.
**See, for example, Ref. 8, esp. pp. 3 and 10-14.

11
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APPENDIX A. MANIPULATION OF (17) INTO FFT FORM

Equation (17) can te expressed as
H-t
. ais. )il
Wae Re = % expliT ) enpliZERe ), mehz, (A-1)
where
rn . .y H"
Gor & T (8 cos(3 ), meot - W (A-2)
is a real.sequence. Defining
Zo=Ya orr(i?ﬂ‘))“ =01, Bl (A-3)
(A=1) becomes
ann
w = Re ZZ. QXP( 5 m:l,z,...) H. (A-L)

Now let us define

H-|
._.nz.o_z., exr(-ilrrkn/ﬂ), all k. (a-5)

Then from (A-4) and (A-5),
W, = Re(4), 1= 2ks H. (4-6)

Also, from (A-4) and (A-3),
W, = Re :%_'2,, txr(i—zzl:%)exf(—;%rkn/}")

2X-1 neo
H-t . Jmn . <
 Re 2 rexr(iZex(-2meld), s 20e b o
whereas from (A-35) %"d (1-3),

o~ =
H4i-k

h‘O
S ::: QXF -3 3 H) ex;(( \QKP\* 71rl(n/H>
= :: Y ex,{i %n)exr(-i Zﬂ-kn/H), (A-8)

19
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Therefore '
Wy = Re (‘(Hn-x)’ V2215 h9)
Expanding (A-6) and (A-9) out in detail, there follows (for H even)
w, = Re(x,) = Re (% w = Re(<)
%~ Refei) > Rebe)
W, ,° Re(o(g_“) Wp © Re("‘;-.) |
Wy © Re ("(!wl) " * Rc(c’(’}) ' -

Thus the real parts of the H-point FFT ﬁn (A-5) for 0OLkKs H -1
serve to determine all the weights {w£}1.




APPENDIX B.

presented in Refs. 6 and 7.
to a power of 2, but can be generalized via the technique of Appendix

A.

BROUTINE DPOLPHS(H+DBsX Y +C)

PROGRAMS
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The FFTs required in the following two subroutines are these
The programs are written for H equal

OUBLE PRECISION HZ1+ZQrAeTsC1+C2,T1,T2
INTEGER H € PROGRAM WRITTEN FOR Hz2++INTEGER

DIMENSION X(1)rY(1)eCt1)

1213He2-1
H21:3111

20=10.00++ (.0500+ABS(DB) )
Z0:-LOE(ZD+SQRT(20°20-1.D0))

Z0=COSKH(Z0/H2])

A=1.870796326794896619D0/4

I1zH/2~-1
I12=H/4+2
Xt1):z.500+T(20!
Y(1)=0.

DO 1 K=1:11
C1=CO0S(AX)
CL=SIN(A-K)

IF(NOD(K y4) NE.O) GO TO 2

I3=K/4 41

ct13)=C}
ci12-13)=¢c2

T1=T(20+CY1)

J2=T(20+C2)
X{k+1)sTi+C1
Y(K41)=3TLC2
X{Hel1-%X)=T2-C2
Y(H+i-k)aTL+C]
€1=SQRT(.5D0)
I3zN/8 41
Ciiiz1.
ClI=C1
c‘Iz‘i,:o.
T1=T(20+C1)
X(11+2)=T1s¢1
Y{I1+2)=2X(]I1+2)




K=1.M27°L°G(H)+.S
CALL MKLFFTIXeYoCoKo-1)
B=1,/H

I1zH-3

DO 3 K=1:11:2
IZ2=(H+3-K)/2
ISZINeIeK)/2
CIKI=BeX(IZ)
CIK+1)=BsX(13)
ClH=-1):zBeX(2)
ClHIZReX (1)

RETURN

FUNCTION Ti(X)

DOUBLE PREEISION X
IF(X.6T.1.00) 60 TO
T=COS(H21+AC0S (X))

RE TURN
T(X¢IQRT(XeX~1.00))e+T21
T-.500+(T41.00/7)
RETURN

END

SUBROVTINE DOLPHOD(HIDB XY C)

DOUBLE PRECISTON H21¢20¢ArTeC1+C2¢TL T2,xX(1)pY(1)sC(1)
INTEGER W @ PROGRAM WRITTEN FOR H=2¢«INTEGER
I21:-H+2-1

KH21=121

20:10,00++({ .0500+ABS (DB))

20:L0GL20+SQRT (20+20-1.00))

20=COSK(20/K21)

Az1.57079632679489661900/H

1i=H/2-1

I2=H/4+2

22




X(1)=.500+T(Z0)
Y(1):=0.00
DO 414 K=1,1I1
Ci12CES(AX)
CL=SINLAsK])
1€ (MOD(Ky4) .NE.O) GO TO 2
132K/74+4L
cixlizel
CiI2-313:)=C2
T1=7(20-C1)
T2:T120+C2)
X(iK41)=T1¢3
YIKe1)ZT1sC2
X(H11-K)=T2+¢2
YUHs1-K)=T2+C]
Cl=SQRT(.500!
13=H/8 41
€(1):-1,00
Cir3i=cs
¢(12-1)=0.D0
T1=T7(Z20°C1)
X(Z1e2)=T1eCY
Y(T1+42)z=Xx(11+2)
K=1.4G27«L0G(N)+.S5
CALL PPMFFT(X2XYeCsKo~-1)
Al . pb/H
I1:N-3
00 3 K=1,112
12=(He¢3-K) /2
I3=(H+34K) /2
ClkIzpex(12)
CLK+1)=A»X(12)
ClH=1l)IzAsX(2)
C(HIZA*X(1)
RETURN
FUNCTION T(X)
DOUBLE PRECISION X
IF(X.GT.4.00) GO TO 1
T=COS (H21+AL0S (X))
RE TURN
Tz (X4SQRT( X#X~1.00))ss321
=.SDO° (T'l.DO/T)
RETURN
END
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